# **SCSU CRISP CCSA Teacher Module 2016**

| Title of Module: Exploring Materials: Liquid Crystals   |                                      |
|---------------------------------------------------------|--------------------------------------|
| Subject or Unit of Study: Temperature, Properties at th | e nanoscale, Properties of materials |
| <b>GRADE LEVEL</b> :5+                                  | LENGTH OF DEMO/LESSON:               |

#### **STUDENT OBJECTIVES:**

Exposes students to the fact that many common substances, such as salt, sugar and ice are crystals and have repeating geometric patterns (Physical Science).

# Students will understand that:

- Nanometer-sized things are very small, and often behave differently than larger things do.
- Nanoscience, nanotechnology, and nanoengineering lead to new knowledge and innovations that weren't possible before.

# **STANDARDS:**

# **NEXT GENERATION SCIENCE STANDARDS**

| NGSS Performance             | MS-PS1-1.                                                                        |  |
|------------------------------|----------------------------------------------------------------------------------|--|
| Tasks                        | Develop models to describe the atomic composition of simple molecules and        |  |
|                              | extended structures.                                                             |  |
| NGSS Disciplinary            | PS1.A: Structure and Properties of Matter                                        |  |
| Core Ideas (DSI)             | Substances are made from different types of atoms, which combine with one        |  |
|                              | another in various ways. Atoms form molecules that range in size from two to     |  |
|                              | thousands of atoms.                                                              |  |
|                              | Solids may be formed from molecules, or they may be extended structures with     |  |
|                              | repeating subunits (e.g., crystals).                                             |  |
| NGSS Cross-Cutting           | CCC-3 Scale, Proportion, and Quantity                                            |  |
| Concepts (CCC)               | Time, space, and energy phenomena can be observed at various scales using models |  |
|                              | to study systems that are too large or too small.                                |  |
| NGSS Science and             | SEP 2 – Developing and Using Models                                              |  |
| <b>Engineering Practices</b> | Develop a model to describe unobservable mechanisms.                             |  |
| (SEP)                        |                                                                                  |  |

# **COMMON CORE STANDARDS**

| CC-ELA/Literacy | RST.6-8.7                                                                                                                                                                                                                          |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Standards       | <ul> <li>Integrate quantitative or technical information expressed in words in a text with a<br/>version of that information expressed visually (e.g., in a flowchart, diagram, model,<br/>graph, or table). (MS-PS1-1)</li> </ul> |  |
| CC-Math         | MP.2                                                                                                                                                                                                                               |  |
|                 | <ul> <li>Reason abstractly and quantitatively. (MS-PS1-1)</li> </ul>                                                                                                                                                               |  |
|                 | MP.4                                                                                                                                                                                                                               |  |
|                 | Model with mathematics. (MS-PS1-1)                                                                                                                                                                                                 |  |
|                 |                                                                                                                                                                                                                                    |  |
|                 |                                                                                                                                                                                                                                    |  |



## 6.RP.A.3

Use ratio and rate reasoning to solve real-world and mathematical problems. (MS-PS1-1)

#### 8.EE.A.3

• Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. (MS-PS1-1)

#### **MATERIALS:**

- Assortment of liquid crystal sheets
- 9v battery
- Snap connector for 9V battery
- Cup of ice
- Liquid Crystal sheets

## **SAFETY:**

Dispose of dead batteries according to law

#### **LEARNER BACKGROUND**

Liquid crystals represent a phase in between liquid and solid. The molecules in a liquid crystal can move independently, as in a liquid, but remain somewhat organized, as in a crystal (solid).

These liquid crystals respond to changes in temperature by changing color. As the temperature increases, their color changes from red to orange, yellow, green, blue, and purple.

## **ASSESSMENT:**

#### **STEM CAREERS:**

**Materials Scientist** 

Researcher

Engineer

**Environmental Engineer** 

Solar Energy Systems Engineers

Nano-technologist

**Aerospace Engineers** 

**Computer Hardware Engineers** 

**Materials Engineers** 

**Mechatronics Engineers** 

Nanosystems Engineers

Nanotechnology Engineering Technologists

Nanotechnology Engineering Technicians

# **ADDITIONAL RESOURCES:**

http://www.nisenet.org/catalog/exploring-materials-liquid-crystals

# **TEACHER NOTES:**

