



## KIT TITLE: Designing Prosthetic Devices

GRADE LEVEL: Middle and High school

### **OBJECTIVES:**

Students will be able to:

- Execute and explain the Engineering Design Process
- Design and build a model prosthesis that can perform similar functions to the human hand Recognize design constraints and critically assess design solutions

#### NEXT GENERATION SCIENCE STANDARDS

| NCSS Darfarmanca          | MS-ETS1-2                                                                                                                                                                                                                                                                                            |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NGSS Performance<br>Tasks | <ul> <li>Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.</li> <li>HS-ETS1-3</li> <li>Evaluate a solution to a complex real-world problem based on</li> </ul>                                             |
|                           | prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.                                                                                                    |
| NGSS Disciplinary         | MS-PS1-3                                                                                                                                                                                                                                                                                             |
| Core Ideas (DSI)          | <ul> <li>Gather and make sense of information to describe that synthetic<br/>materials come from natural resources and impact society.</li> </ul>                                                                                                                                                    |
|                           | MS-ETS1-1                                                                                                                                                                                                                                                                                            |
|                           | <ul> <li>Define the criteria and constraints of a design problem with sufficient<br/>precision to ensure a successful solution, taking into account relevant<br/>scientific principles and potential impacts on people and the natural<br/>environment that may limit possible solutions.</li> </ul> |
|                           | MS-ETS1-3                                                                                                                                                                                                                                                                                            |
|                           | <ul> <li>Analyze data from tests to determine similarities and differences<br/>among several design solution to identify the best characteristics of<br/>each that can be combined into a new solution to better meet criteria<br/>for success.</li> </ul>                                           |
|                           | MS-EST1-4                                                                                                                                                                                                                                                                                            |
|                           | <ul> <li>Develop a model to generate data for iterative testing and<br/>modification of a proposed object, tool, or process such that an<br/>optimal design can be achieved.</li> </ul>                                                                                                              |







# Center for Research on Interface Structure and Phenomena (CRISP) CRISP CLASSROOM KITS & DEMONSTRATIONS STANDARD ALIGNMENT



|                                                    | <ul> <li>HS-ETS1-1         <ul> <li>Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.</li> <li>HS-ETS1-2             <ul> <li>Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.</li> <li>Analyze a major global challenge to specify qualitative and quantitative and quantitative criteria and constraints for solutions that account for societal needs and wants.</li> <li>HS-ETS1-2</li></ul></li></ul></li></ul> |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    | <ul> <li>HS-ETS1-4</li> <li>Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                             |
| NGSS Cross Cutting<br>Concepts (CCC)               | <ul> <li>CC-4: Systems and System Models         <ul> <li>Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows— within and between systems at different scales. (HS-ETS1-4)</li> </ul> </li> <li>CC-2: Cause and Effect         <ul> <li>New technologies can have deep impacts on society and the environment, including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology. (HS-ETS1-1) (HS-ETS1-3)</li> </ul> </li> </ul>                                    |
| NGSS Science and<br>Engineering Practices<br>(SEP) | <ul> <li>SEP 2- Developing and Using Models</li> <li>Asking questions (for science) and defining problems (for engineering)<br/>Constructing explanations (for science) and designing solutions (for<br/>engineering)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                  |







Center for Research on Interface Structure and Phenomena (CRISP) CRISP CLASSROOM KITS & DEMONSTRATIONS STANDARD ALIGNMENT



#### COMMON CORE STANDARDS

| CC - ELA/Literacy | RST.11-12.7                                                                                                                                                                                                                                                         |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standards         | <ul> <li>Integrate and evaluate multiple sources of information presented in<br/>diverse formats and media (e.g., quantitative data, video, multimedia)<br/>in order to address a question or solve a problem. (HS-ETS1-1),(HS-<br/>ETS1-3)</li> </ul>              |
|                   | RST.11-12.8                                                                                                                                                                                                                                                         |
|                   | <ul> <li>Evaluate the hypotheses, data, analysis, and conclusions in a science or<br/>technical text, verifying the data when possible and corroborating or<br/>challenging conclusions with other sources of information. (HS-ETS1-<br/>1),(HS-ETS1-3)</li> </ul>  |
|                   | RST.11-12.9                                                                                                                                                                                                                                                         |
|                   | <ul> <li>Synthesize information from a range of sources (e.g., texts,<br/>experiments, simulations) into a coherent understanding of a process,<br/>phenomenon, or concept, resolving conflicting information when<br/>possible. (HS-ETS1-1),(HS-ETS1-3)</li> </ul> |
| CC-Math Standards | MP.2                                                                                                                                                                                                                                                                |
|                   | Reason abstractly and quantitatively. (5-PS1-1)                                                                                                                                                                                                                     |
|                   | MP.4                                                                                                                                                                                                                                                                |
|                   | Model with mathematics. (5-PS1-1)                                                                                                                                                                                                                                   |



