Materials & Manufacturing Summer Institute "How Things are Made" Southern Connecticut State University July 30, 2013

Introduction to Manufacturing Technologies

George Muench Precision Combustion Inc.

I Introduction

Turning raw materials into products requires some combination of Science, Engineering, and imagination. It is often possible to make the same product using different manufacturing technologies. Using an example below, it is possible to make a pipe or tube by

Welding
Extruding
Drawing
Spray Cast
Casting
Or combinations of the above.

In selecting among the technologies, there are often no right and wrong solutions. There are only different advantages and disadvantages depending on the end use.

Manufacturing materials include Metals, Ceramics, and Polymers both singly and as composites. This brief introduction to manufacturing will concentrate on the fundamentals of metallurgy as applied to manufacturing.

II Fundamentals of Metallurgical Processing

- 1 Heat it
- 2 Beat it

III Introduction to Casting

Casting is a versitile process which can be done using Metals, Plastics, and Ceramics. The basic requirement is the material must be fluid enough to enter the mold and then solid enough to stand on its own after removing from the mold.

The basic processess for casting a material are:

Liquify some stuff, usually by heating Pour (force) it into a mold Solidify (Freeze) the stuff Remove the product for subsequent processing

Science Issues Melting Point

Latent Heats Specific Heat

Thermal Expansion / contraction

Heat Transfer Surface Tension

Engineering Issues Melt Temperature

Mold Temperature

Sprue Too much / too little

Sprue – removing - Surface finishing

Heat management

Other Casting Concepts

Single use Molds Sand Casting

Lost Wax Process

Injection Moulding Force the material into the mold under pressure

Mouldless Casting Shot towers

Slip Casting Ceramic Slurries

Group question: Where does this fit into a curiculum?

Casting Simplified Clamshell Mold (Typically Metals)

Remove Sprue Finish Surface If Required

Slip Casting of Ceramics

Fig 5 Ceramic slip costing process. (a) Drain casting. (b) Solid casting

Taken from ASM Engineered Materials Handbook

Sintering of Ceramics

Figure 1. Changes which occur during the initial stage of sintering. (a) Starting particles, (b) rearrangement, and (c) neck formation.

Figure 2. Changes which occur during the second stage of sintering. (a) Neck growth and volume shrinkage, (b) lengthening of grain boundaries, and (c) continued neck growth and grain boundary lengthening, volume shrinkage and grain growth.

Figure 3. Changes which occur during the final stage of sintering. (a) Grain growth with discontinuous pore phase, (b) grain growth with porosity reduction, and (c) grain growth with porosity elimination.

IV Introduction to Forging

Forging is beating the raw material into shape. The basic requirement for forging is that the material be malleable. Thus forging is typically done for metals.

Science Issues Work (Force times distance)

Conservation of Energy

Mechanical, thermal, and internal energy

More Science – Work Hardening – What doesn't kill you makes you stronger

When you work on a piece of metal, you put energy into it.

Some of the energy goes into deformation

Some of the energy goes into heat

Some of the energy goes into increasing the internal energy of the metal.

This internal energy affects the properties of the metal

FIGURE 4: Effect of Work Hardening on Tensile Strength, Yield Strength & Elongation (Ductility) of Annealed (Soft) Brass Alloy C26000

Taken from the Copper Devleopent Association

Processes related to forging include

Transfer of surface features and finish Embossing

Beating materials through a hole Extrusion

Beating metal around corner Bending

Forcing metal strip between roll Rolling

Group question: Where does this fit into a curiculum?

V Properties versus processing 2 – Welded Pipe

One common way to make pipe is to:

Cast a bar Roll it flat to the desired wall thickness of a tube Bend it into a tube Weld the ends together

Roll Metal flat

Microstructure of Weld Joint in Tube

A cross-section through a seam weld in a 400 series ferritic stainless steel tube. The seam exhibits a wide fusion zone and a large grain size contributing to brittleness of the weldment. (Mag: 25X)

http://www.met-tech.com/metallography.html

This gives a pipe with: A wrought structure over most of the circumference

A cast structure at the joint

These two structures have different properties

Platitude: Your manufacturing process may affect the properties of your materials

VI Other manufacturing processes which we don't have time to discuss:

Cleaning

Cleaning

Cleaning

Cleaning

Machining

Powder Processing

Cutting, shearing, slitting

Drawing

Stamping

Cupping

Joining

Heat treating / cryogenic treating

Electroforming, plating

Spraying

Vapor deposition

Dipping

Etc

VII Conclusions

Your manufacturing process will depend on:

The desired properties of your product

The properties of your feedstock

Science and Engineering

Money

Your imagination

Group question: Where does this fit into a curiculum?